

Simple Compounds

 The name of a binary compound containing monatomic ions consists of the name of the **cation** (the name of the metal) followed by the name of the **anion** (the name of the nonmetallic element with its ending replaced by the suffix -ide).

Examples	
• NaCl	
Sodium chloride	· · · · · · · · · · · · · · · · · · ·
• MgF ₂	
Magnesium fluoride	
• Al ₂ O ₃	
Aluminum oxide	
• Na ₂ O	
Sodium oxide	
Compounds Containing	
Polyatomic Ions	
·	
Compounds containing polyatomic ions are named by naming the cation and then	
the anion.	-
and annorm	
Evernlee	
Examples	<u></u>
• CaSO ₄	
Calcium sulfate	
• KNO ₃	
Potassium nitrate	
• NaOH	-
Sodium hydroxide	
• Al ₂ (CO ₃) ₃	
Aluminum carbonate	

Compounds Containing a Metal Ion with a Variable Charge

- All the transition metals and many main group metals can form cations with different charges.
- In the name, the charge of the metal ion is specified by a Roman numeral in parentheses after the name of the metal.
- The charge of the metal ion is determined from the formula of the compound and the charge of the anion.
- For example, consider the compound FeCl₂.
- Iron can have a charge of 2+ or 3+.
- Chlorine has a charge of 1-.
- There are two chlorine atoms, so the total charge from chlorine is 2-.
- Since the number of charges must be equal, the charge on iron must be 2+.
- Therefore, the name of iron must be iron(II).
- The compound is therefore iron(II) chloride.

Examples

- FeCl₃
 - Iron(III) chloride
- SnF₂
 - Tin(II) fluoride
- SnF₄
 - Tin(IV) fluoride
- HgO
 - · Mercury(II) oxide

•			
		<u> </u>	

Writing Formulas

- Write the chemical symbol for both ions, including the charge.
- "Criss-cross" the charges of each ion.
- Like charges cancel out.

Examples

calcium chloride

$$Ca^{2+}Cl^{-} \longrightarrow CaCl_{2}$$

aluminum oxide

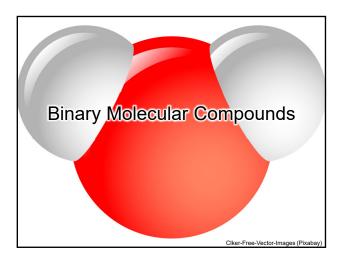
$$AI^{3+}O^{2-} \longrightarrow AI_2O_3$$

magnesium oxide

$$Mg^{2+} O^{2-} \longrightarrow MgO$$

potassium hydroxide

$$K^+OH^- \longrightarrow KOH$$


sodium sulfate

$$Na^+SO_4^{2-} \longrightarrow Na_2SO_4$$

calcium nitrate

$$Ca^{2+}NO_3^- \longrightarrow Ca(NO_3)_2$$

iron(III) oxide
$$Fe^{3+}O^{2-} \longrightarrow Fe_2O_3$$
 copper(II) chloride
$$Cu^{2+}Cl^{-} \longrightarrow CuCl_2$$
 cobalt(III) nitrate
$$Co^{3+}NO_3^{-} \longrightarrow Co(NO_3)_3$$

- When two non-metallic elements form a molecular compound, several combination ratios are often possible.
- For example, carbon and oxygen can form the compounds CO and CO₂.
- Since these are different substances with different properties, they cannot both have the same name.
- To deal with this situation, we add prefixes to specify the numbers of atoms of each element.

•			
•			
•			
•			
•			

 The name of a binary molecular compound consists of the name of the first element followed by the name of the second element with the suffix "ide." A prefix representing the number of atoms is placed in front of each name. If there is only one of the first element, the prefix is normally omitted. 	
Prefixes	
• 1 = mono • 6 = hexa	
• 2 = di • 7 = hepta	
• 3 = tri • 8 = octa	
• 4 = tetra • 9 = nona	
• 5 = penta • 10 = deca	
	7
Francis	
Examples	
CO ₂ carbon dioxide	
N ₂ O ₅ dinitrogen pentoxide	
C ₄ H ₈ tetra carbon octahydride	

Writing Formulas

- Write the chemical symbol for both elements.
- The number of each element is given by the prefix.

Examples	
tricarbon tetrahydride	$C_3 H_4$
sulfur dioxide	SO ₂
nitrogen monoxide	NO
